An Efficient Algorithm for the Reflexive Solution of the Quaternion Matrix Equation AXB + CXHD = F

نویسندگان

  • Ning Li
  • Qing-Wen Wang
  • Jing Jiang
چکیده

We propose an iterative algorithm for solving the reflexive solution of the quaternion matrix equation AXB + CXHD = F. When the matrix equation is consistent over reflexive matrix X, a reflexive solution can be obtained within finite iteration steps in the absence of roundoff errors. By the proposed iterative algorithm, the least Frobenius norm reflexive solution of the matrix equation can be derived when an appropriate initial iterative matrix is chosen. Furthermore, the optimal approximate reflexive solution to a given reflexive matrixX 0 can be derived by finding the least Frobenius norm reflexive solution of a new corresponding quaternion matrix equation. Finally, two numerical examples are given to illustrate the efficiency of the proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

An Iterative Algorithm for the Generalized Reflexive Solution of the Matrix Equations A X B = E, C X D = F

An iterative algorithm is constructed to solve the linear matrix equation pair AXB E, CXD F over generalized reflexive matrix X. When the matrix equation pair AXB E, CXD F is consistent over generalized reflexive matrix X, for any generalized reflexive initial iterative matrix X1, the generalized reflexive solution can be obtained by the iterative algorithm within finite iterative steps in the ...

متن کامل

The least-square bisymmetric solution to a quaternion matrix equation with applications

In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013